A Bulk Metal® foil high precision resistor, unlike a precision-class metal film resistor or wire-wound resistor, is an ultra precision resistor in which the primary resistance element is a special alloy foil several µm thick.

Use of this Bulk Metal® Foil as the resistance element gives superior performance not found in other resistors, satisfying military specification MIL-PRF-55182/9. In particular, the temperature coefficient of resistance has been reduced to an unprecedented, extremely low value by strict quality control of alloy composition and newly developed foil stabilization treatment technology. In addition, from the point of view of long-term stability, which is an important property of a resistor since the foil has a thickness of several µm instead of the extremely thin film of a metal film resistor, the natural stability of metal is preserved, resulting in very little resistance change over several years.

By developing our own original fine photo-etching technology, we have made it possible to form the complicated resistance pattern required for highly accurate resistance values.

**MAIN APPLICATIONS**

Precise amplifier circuitry and referential power supply in items such, as sophisticated electronic equipment, instrumentation and medical electronic apparatus.

<table>
<thead>
<tr>
<th>CHARACTERSITCS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Temperature Coefficient of Resistance:</strong></td>
</tr>
<tr>
<td>0.14 ppm/°C (Typical, 0°C to +50°C)</td>
</tr>
<tr>
<td><strong>Resistance Tolerance:</strong></td>
</tr>
<tr>
<td>±0.005%</td>
</tr>
<tr>
<td><strong>Shelf Life:</strong></td>
</tr>
<tr>
<td>25 ppm/year; 50 ppm/3 years</td>
</tr>
<tr>
<td>(Hermetically sealed: 5 ppm/year 10 ppm/3 years)</td>
</tr>
<tr>
<td><strong>Load Life:</strong></td>
</tr>
<tr>
<td>0.01%/2,000 hours at Rated Power</td>
</tr>
<tr>
<td><strong>Thermal EMF:</strong></td>
</tr>
<tr>
<td>0.1 µV/°C (between leads)</td>
</tr>
<tr>
<td><strong>Noise:</strong></td>
</tr>
<tr>
<td>–42 dB</td>
</tr>
<tr>
<td><strong>Voltage Coefficient:</strong></td>
</tr>
<tr>
<td>0.3 ppm/V</td>
</tr>
<tr>
<td><strong>Frequency Characteristics:</strong></td>
</tr>
<tr>
<td>Inductance: 0.08 µH</td>
</tr>
<tr>
<td>Capacitance: 0.5 pF</td>
</tr>
</tbody>
</table>
MANUFACTURING PROCESS

Forming metal alloy by vacuum-melting

Rolling to make foil

Bonding foil onto substrate

Photo-etching to draw resistive path

Laser-trimming for adjusting resistance

Cutting to get chips

(SMT, MP and MQ Type)

Mounting on lead frames

Spot-welding leads onto chips

Wire-bonding on terminal pads

Protection coating

Protection coating

Transfer-molding

Transfer-molding

Screening

Screening

Final inspection

Final inspection

Shipping

Shipping

CONSTRUCTION

Construction of SMT (MP, MQ Type)

Outer coating is made of epoxy resin, which provides excellent resistance to moisture, heat and solvents. Gold wire-bond connects between lead frames and resistive elements. Also, resistive elements are designed to be mounted on lead frames efficient heat removal.

① Transfer-molded resin (heat-resistant epoxy)
② Coating for moisture protection and buffering
③ Protective layer
④ External lead
⑤ Bulk Metal® Foil (etched resistive element)
⑥ Bonding layer (polymide)
⑦ Ceramic substrate (high-purity alumina)
⑧ Gold wire
⑨ Terminal pads

Construction of Transfer-Molded Type

The outer cover is transfer-molded epoxy resin strongly resistant to heat, moisture and solvents. Inside, there are secondary leads which act as a buffer so that stress on the exterior leads is not transmitted to the foil, providing stability against vibrations when the resistor is mounted on a circuit.

① Transfer-molded resin (heat-resistant epoxy)
② Coating for moisture protection and buffering
③ Protective layer
④ Bulk Metal® Foil (etched resistive element)
⑤ Bonding layer (polymide)
⑥ Ceramic substrate (high-purity alumina)
⑦ Resin strengthening welded part
⑧ Secondary lead (abating mechanical stress from outside)
⑨ High-temperature solder
⑩ Exterior lead (Dia. 0.65 mm)

ADJUSTMENT OF RESISTANCE VALUE

Foil bonded on substrate is photo-etched to make a fine path pattern to provide a desired value. A series of trimming locations are laid out on the pattern, as shown in A through E (fig. above). As shown at C, the trimming method is to increase the resistance by cutting the Bulk Metal® Foil. The resistance value can be made accurate to within ±50 ppm of the desired value by cutting at several of the trimming locations. The locations that are cut for trimming are where the electric current flow (arrows in diagram) will not be affected so that the trimming will not cause electrical noise or changes over the years.
TEMPERATURE CHARACTERISTICS OF RESISTANCE

Char.S

Δ R/R (ppm)

Temperature (°C) | Δ R/R (ppm)
---|---
-55 | 0±60
0 | 0±15
+50 | 0±15
+125 | 0±50

Char.Z (0±1 ppm/°C)

Δ R/R (ppm)

Temperature (°C) | Δ R/R (ppm)
---|---
-55 | -1 ppm/°C
0 | +1 ppm/°C
+50 | 0±15
+125 | 0±50

Char.Y (0±2.5 ppm/°C)

Δ R/R (ppm)

Temperature (°C) | Δ R/R (ppm)
---|---
-55 | -2.5 ppm/°C
0 | +2.5 ppm/°C
+50 | 0±15
+125 | 0±50

Char.X (0±5 ppm/°C)

Δ R/R (ppm)

Temperature (°C) | Δ R/R (ppm)
---|---
-55 | -5 ppm/°C
0 | +5 ppm/°C
+50 | 0±15
+125 | 0±50

Char.W (0±15 ppm/°C)

Δ R/R (ppm)

Temperature (°C) | Δ R/R (ppm)
---|---
-55 | -15 ppm/°C
0 | +15 ppm/°C
+50 | 0±15
+125 | 0±50